Episomal Induced Pluripotent Stem Cells Promote Functional Recovery of Transected Murine Peripheral Nerve
نویسندگان
چکیده
Traumatic peripheral nerve neurotmesis occurs frequently and functional recovery is often slow and impaired. Induced pluripotent stem cells (iPSCs) have shown much promise in recent years due to its regenerative properties similar to that of embryonic stem cells. However, the potential of iPSCs in promoting the functional recovery of a transected peripheral nerve is largely unknown. This study is the first to investigate in vivo effects of episomal iPSCs (EiPSCs) on peripheral nerve regeneration in a murine sciatic nerve transection model. Episomal iPSCs refer to iPSCs that are generated via Oct3/4-Klf4-Sox2 plasmid reprogramming instead of the conventional viral insertion techniques. It represents a relatively safer form of iPSC production without permanent transgene integration which may raise questions regarding risks of genomic mutation. A minimal number of EiPSCs were added directly to the transected nerve. Functional recovery of the EiPSC group was significantly improved compared to the negative control group when assessed via serial five-toe spread measurement and gait analysis of ankle angles. EiPSC promotion of nerve regeneration was also evident on stereographic analysis of axon density, myelin thickness, and axonal cross-sectional surface area. Most importantly, the results observed in EiPSCs are similar to that of the embryonic stem cell group. A roughly ten-fold increase in neurotrophin-3 levels was seen in EiPSCs which could have contributed to peripheral nerve regeneration and recovery. No abnormal masses or adverse effects were noted with EiPSC administration after one year of follow-up. We have hence shown that functional recovery of the transected peripheral nerve can be improved with the use of EiPSC therapy, which holds promise for the future of nerve regeneration.
منابع مشابه
Neural precursor cells generated from Induced pluripotent stem cells with gelatin sponge-electrospun PLGA/PEG nanofibers for spinal cord injury repair
Objective: This study attempted to graft neural precursor cells (NPCs) differentiated from mouse induced pluripotent stem cells (iPSc) with gelatin sponge-electrospun Poly (lactic-co-glycolic acid)-Polyethylene glycol (PLGA/ PEG) nanofibers into transected rat spinal cords and to investigate whether the tissue engineering scaffolds could promote motor functional recovery. Methods: iPSc were dif...
متن کاملBone Marrow Stromal Cells Associated with Poly L-Lactic-Co-Glycolic Acid (PLGA) Nanofi ber Scaff old Improve Transected Sciatic Nerve Regeneration
Background: Although peripheral nerves show capacity for regeneration after injury to a certain extent, the extent of regeneration is not remarkable. Previous studies have suggested that through the production of growth factors or extracellular matrix components, mesenchymal stem cells may enhance nerve regeneration.Objectives: In the present study, the therapeutic potenc...
متن کاملP21: Local Administration of Methylprednisolone Laden Hydrogel Enhances Functional Recovery of Transected Sciatic Nerve in Rat
The repair of peripheral nerve injuries is still one of the most challenging tasks and concerns in neurosurgery. Effect of methylprednisolone-laden hydrogel loaded into a chitosan conduit on the functional recovery of peripheral nerve using a rat sciatic nerve regeneration model was assessed. A 10-mm sciatic nerve defect was bridged using a chitosan conduit (CHIT/CGP-Hydrogel) filled with CGP-h...
متن کاملEffect of Local Administration of Laminin and Fibronectin with Chitosan Conduit on Peripheral Nerve Regeneration: A Rat Sciatic Nerve Transection Model
Objective-Effect of local administration of laminin and fibronectin on nerve regeneration was assessed. Design- Experimental study. Animal- Sixty male Wistar rats. Procedures- The animals were divided into four experimental groups (n=15), randomly: In transected group left sciatic nerve was transected and stumps were fixed in adjacent muscle. In treatment group (CHIT/LF) the defect was bridg...
متن کاملInteraction of iPSC-derived neural stem cells on poly(L-lactic acid) nanofibrous scaffolds for possible use in neural tissue engineering
Tissue engineering is a rapidly growing technological area for the regeneration and reconstruction of damage to the central nervous system. By combining seed cells with appropriate biomaterial scaffolds, tissue engineering has the ability to improve nerve regeneration and functional recovery. In the present study, mouse induced pluripotent stem cells (iPSCs) were generated from mouse embryonic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016